For Exercises 5-7, write each number in scientific notation.

- **5.** 100,000,000
- **6.** 29,678,900,522
- **7.** 11,950,500,000,000

For Exercises 8-10, write each number in standard form.

- 8. 6.43999001×10^8
- **9.** 8.89234×10^{5}
- **10.** $3.4348567000 \times 10^{10}$

16. The graphs below represent the equations $y = 2^x$ and y = 2x + 1.

Graph 1 Graph 2

- **a.** Tell which equation each graph represents. Explain your reasoning.
- **b.** The dashed segments show the vertical and horizontal change between points at equal *x* intervals. For each graph, compare the vertical and horizontal change between pairs of points. What do you notice?
- **c.** Does either equation represent an exponential function? A linear function? Explain.

14. Zak's uncle wants to donate money to Zak's school. He suggests three possible plans. Look for a pattern in each plan.

Plan 1 He will continue the pattern in this table until day 12.

School Donations

Day	1	2	3	4
Donation	\$1	\$2	\$4	\$8

Plan 2 He will continue the pattern in this table until day 10.

School Donations

Day	1	2	3	4
Donation	\$1	\$3	\$9	\$27

Plan 3 He will continue the pattern in this table until day 7.

School Donations

Day	1	2	3	4
Donation	\$1	\$4	\$16	\$64

- **a.** Copy and extend each table to show how much money the school would receive each day.
- **b.** For each plan, write an equation for the relationship between the day number n and the number of dollars donated d.
- **c.** Are any of the relationships in Plans 1, 2, or 3 exponential functions? Explain.
- **d.** Which plan would give the school the greatest total amount of money?

15. Carmelita is planning to swim in a charity swim-a-thon. Several relatives said they would sponsor her.

I will give you \$1 if you swim 1 lap, \$3 if you swim 2 laps, \$5 if you swim 3 laps, \$7 if you swim 4 laps, and so on.—Grandmother

I will give you \$1 if you swim 1 lap, \$3 if you swim 2 laps, \$9 if you swim 3 laps, \$27 if you swim 4 laps, and so on.—Father

I will give you \$2 if you swim 1 lap, \$3.50 if you swim 2 laps, \$5 if you swim 3 laps, \$6.50 if you swim 4 laps, and so on.—Aunt Josie

I will give you \$1 if you swim 1 lap, \$2 if you swim 2 laps, \$4 if you swim 3 laps, \$8 if you swim 4 laps, and so on.—Uncle Sebastian

WOW! Thanks everyone for your support!—Carmelita

- **a.** Decide whether each donation pattern is an *exponential function, linear function,* or *neither*.
- **b.** For each relative, write an equation for the total donation d if Carmelita swims n laps. Which variable is the independent variable? Dependent variable?
- **c.** For each plan, tell how much money Carmelita will raise if she swims 20 laps.

like a rectangular prism with a length of 4 feet, a width of 3 feet, and a height of 2 feet. She has a fishing pole that is 6 feet long. Can she store the fishing pole in the box? Use words, numbers, and/or diagrams to justify your answer.

For Exercises 45–47, find the slope and y-intercept of the graph of each equation.

45.
$$y = 3x - 10$$

46.
$$y = 1.5 - 5.6x$$

47.
$$y = 15 \pm \frac{2}{5}x$$

49. Consider the two equations below.

Equation 1

Equation 2

$$r = 3^n - 1$$

$$r = 3^{n-1}$$

- **a.** For each equation, find r when n is 2.
- **b.** For each equation, find r when n is 10.
- **c.** Explain why the equations give different values of r for the same value of n.
- **d.** Do either of these equations represent an exponential function? Explain why.